Local tensor valuations on convex polytopes
نویسنده
چکیده
Local versions of the Minkowski tensors of convex bodies in ndimensional Euclidean space are introduced. An extension of Hadwiger’s characterization theorem for the intrinsic volumes, due to Alesker, states that the continuous, isometry covariant valuations on the space of convex bodies with values in the vector space of symmetric p-tensors are linear combinations of modified Minkowski tensors. We ask for a local analogue of this characterization, and we prove a classification result for local tensor valuations on polytopes, without a continuity assumption.
منابع مشابه
Isometry-Invariant Valuations on Hyperbolic Space
Hyperbolic area is characterized as the unique continuous isometry invariant simple valuation on convex polygons in H. We then show that continuous isometry invariant simple valuations on polytopes in H for n ≥ 1 are determined uniquely by their values at ideal simplices. The proofs exploit a connection between valuation theory in hyperbolic space and an analogous theory on the Euclidean sphere...
متن کاملThe Perles-Shephard identity for non-convex polytopes
Using the theory of valuations, we establish a generalization of an identity of Perles-Shephard for non-convex polytopes. By considering spherical valuations, we obtain the Gram-Euler, Descartes and Euler-Poincar e theorems for non-convex polytopes.
متن کاملTensor valuations on lattice polytopes
The Ehrhart polynomial and the reciprocity theorems by Ehrhart & Macdonald are extended to tensor valuations on lattice polytopes. A complete classification is established of tensor valuations of rank up to eight that are equivariant with respect to the special linear group over the integers and translation covariant. Every such valuation is a linear combination of the Ehrhart tensors which is ...
متن کاملTensor Valuations and Their Local Versions
The intrinsic volumes, recalled in the previous chapter, provide an array of size measurements for a convex body, one for each integer degree of homogeneity from 0 to n. For measurements and descriptions of other aspects, such as position, moments of the volume and of other size functionals, or anisotropy, tensor-valued functionals on convex bodies are useful. The classical approach leading to ...
متن کاملValuations on Polytopes containing the Origin in their Interiors
We give a classification of non-negative or Borel measurable, SL(d) invariant, homogeneous valuations on the space of d-dimensional convex polytopes containing the origin in their interiors. The only examples are volume, volume of the polar body, and the Euler characteristic.
متن کامل